
Polonium: Tera-Scale Graph Mining for Malware Detection

Duen Horng Chau
Carnegie Mellon University

dchau@cs.cmu.edu

Carey Nachenberg
Symantec

cnachenberg@symantec.com

Jeffrey Wilhelm
Symantec

jeffrey_wilhelm@symantec.com

Adam Wright
Symantec

adam_wright@symantec.com

Christos Faloutsos
Carnegie Mellon University

christos@cs.cmu.edu

ABSTRACT
We present Polonium, a scalable and e↵ective technology
for detecting malware. We evaluated it with the largest
anonymized file submissions dataset ever published, which
spans over 60 terabytes of disk space.

We formulated the problem of detecting malware as a
large-scale graph mining and inference task, for which we
construct a huge bipartite graph of almost 1 billion nodes
from our data, 48 million of which are users, and 903 million
are files. Edges, each denoting a file appearing on a machine,
exceeds 37 billion. Our method for identifying malware is
to locate files with low reputation.

Our Polonium algorithm computes file reputation based
on the fast and scalable Belief Propagation algorithm
(O(|E|)), which iteratively improves inference quality. With
one iteration, our method attained 85% true positive rate
(in detecting malware). With more iterations, the true pos-
itive rate further improves for an additional 2%, which is
a significant improvement given the baseline performance is
already very good.

We detail important design and implementation features
of our method which enable its successful application on our
dataset. We also present empirical observations on charac-
teristics and patterns in our large billion-node graph.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications –
Data Mining

General Terms
Algorithms, Experimentation, Security

Keywords
Graph Mining; Malware Detection; Belief Propagation; Graph-
ical Model; Probabilistic Inference; Large data

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

KDD-LDMTA’10, July 25, 2010, Washington, DC, USA.

Copyright 2010 ACM 978-1-4503-0215-9/10/07 ...$10.00.

Polonium Technology Overview

Ground Truth

Database
Labels known-good &

known-bad files

The Polonium

Algorithm
Iteratively computes

and improves labels

for unknown files

...

. . .

?

. . .

Outputs final labels for

unknown files

Machine-File

Bipartite Graph

48M machines

900M files

37B edges

3

4

Anonymous

File Reports
60TB+ data from

millions of worldwide

Norton Community
Watch program
participants

. . .

Proprietary

Formula
Computes machine

reputation 2 2

1
Builds graph

?

?

Figure 1: Overview of the Polonium technology

1. INTRODUCTION
Thanks to ready availability of computers and ubiquitous

access to high-speed Internet connections, malware has been
rapidly gaining prevalence over the past decade, spreading
and infecting computers around the world at an unprece-
dented rate. In 2008, Symantec, the world’s leading security
software provider, reported that the release rate of malicious
code and other unwanted programs may be exceeding that
of legitimate software applications [?]. This suggests tradi-
tional signature-based malware detection solutions will face
great challenges in the years to come, as they will likely be
outpaced by the number of threats being created by malware
authors.

As an example, Symantec released nearly 1.8 million virus
signatures (or definitions) in 2008, resulting in 200 million
[?] detections per month in the field. While this is cer-
tainly a huge amount of blocked malware, Symantec esti-
mates that a great deal more malware (so-called “zero day”
malware [?]) is being generated or mutated for each victim
or small number of victims, which tends to evade traditional

Technical term Synonyms Meaning

Malware Bad software, malicious

software, infected file

Short for malicious software, which includes computer viruses,

Trojan, etc.

Reputation Goodness, belief (when

discussing the Polonium

algorithm)

A measure of the goodness; can be used on machines and files

(e.g., file reputation)

File Software, application,

executable, program

A software instance, typically an executable (e.g., .exe) on the

user’s computer reported to Symantec

Machine Computer A user’s computer; a user can have multiple computers

File ground truth – File label, good or bad , assigned by human security experts

Known-good file – File with good ground truth

Known-bad file – File with bad ground truth

Unknown file – File with unknown ground truth

Positive (as in true positive) – Malware instance

True Positive TP Malware instance correctly identified as bad

False Positive FP A good file incorrectly identified as bad

Table 1: Malware detection terminology. The reader may want to refer to this table for meanings and
synonyms of technical terms.

signature-based antivirus scanners. This has prompted the
software security industry to rethink their approaches in de-
tecting malware, which have heavily relied on refining ex-
isting signature-based protection models pioneered by the
industry decades ago. A new, radical approach to the prob-
lem is needed.

The New Reputation-Based Approach.
Symantec introduced the new protection model that com-

putes a reputation score for every application that users may
encounter, and protects them from files with poor reputation.
Good applications typically are used by many users, from
known publishers, and have other attributes that character-
ize their legitimacy and good reputation. Bad applications,
on the other hand, typically come from unknown publishers,
have appeared on few computers, and have other attributes
that indicate poor reputation. The application reputation
is computed by leveraging tens of terabytes of data anony-
mously contributed by the millions of users participating
in the worldwide Norton Community Watch program [?].
These anonymous data contain important characteristics of
the applications running on their systems [?].

The New Polonium Technology.
At the core of the reputation-based engine is the ensem-

ble of Machine Learning and Data Mining algorithms that
sifts through huge amount of data to statistically infer the
goodness of any unknown application.

In this paper, we describe Polonium, a new malware de-
tection technology developed at Symantec that computes
application reputation (Figure 1), which works in concert
with Symantec’s many other technologies to detect malware.
Polonium stands for “Propagation Of Leverage Of Network

Influence Unearths Malware”. We make the following con-
tributions through Polonium:

• In Section 3, we present patterns and characteristics
observed in our huge anonymized file submissions dataset,

and the machine-file bipartite graph constructed from
it, each of which is the largest of its kind ever pub-
lished. Edges in the graph, each denoting a file ap-
pearing on a machine, exceeds 37 billion.

• In Section 4, we propose the iterative Polonium algo-
rithm that e�ciently computes application reputation.
In addition we show how domain knowledge is readily
incorporated into the algorithm’s operation to identify
malware.

• In Section 5, we demonstrate that Polonium is fast, ef-
fective, and scalable, with experiments on the complete
machine-file graph. We show that the iterative Polo-
nium algorithm achieves a very high TPR of 84.9%
(true positive rate, in correctly identifying malware)
even with only one iteration, when measured at 1%
FPR (false positive rate, in mislabeling good files as
bad). The TPR further improves to 87.1% after 6 more
iterations. Given that the baseline TPR at the first it-
eration is already high, this subsequent improvement
is significant.

• Also in Section 5, we share the non-trivial design and
implementation decisions that we made while devel-
oping Polonium, which halve both the run time and
storage requirement.

To enhance readability of this paper, we have listed the
malware detection terminology used in this paper in Table
1. The reader may want to return to this table throughout
this paper for technical terms’ meanings and synonyms used
in various contexts of discussion. One important note is that
we use both the words “file” and “application” to refer to an
executable file.

2. MALWARE DETECTION &
GRAPH MINING

A malware instance is a program that has malicious in-
tent [?]. Its category of malicious code includes viruses,
worms, Trojan horses, rootkits, spyware, adware, and more

[?]. While some types of malware, such as viruses, are cer-
tainly malicious, some are on the borderline. For exam-
ple, some “less harmful” spyware programs collect the user’s
browsing history, while the “more harmful” ones steal sensi-
tive information such as credit card numbers and passwords;
depending on what it collects, a spyware can be considered
malicious, or only undesirable.

The focus of our work is not on classifying software into
these, sometimes subtle, malware subcategories. Rather,
our goal is to come up with a new, high-level method that
can automatically identify more malware instances similar
to the ones that have already been flagged by Symantec
as harmful and that the user should remove immediately,
or would be removed automatically for them by Syman-
tec’s security products. This distinction di↵erentiates our
work from existing ones that target specific malware sub-
categories.

2.1 Research in Malware Detection
There has been significant research in most malware sub-

categories. Idika and Mathur [?] comprehensively surveyed
45 state-of-the-art malware detection techniques and broadly
divide them into two categories: (1) anomaly-based detec-

tion, which detects malware’s deviation from some presumed
“normal” behavior, and (2) signature-based detection, which
detects malware that fits certain profiles (or signatures).

There have been an increasing number of researchers who
use data mining and machine learning techniques to detect
malware [?]. Kephart and Arnold [?] were the pioneers
in using data mining techniques to automatically extract
viruses signatures. Schultz et al. [?] were one of the first
who used machine learning algorithms (Naive Bayes and
Multi-Naive Bayes) to classify malware. Tesauro et al. [?]
used Neural Network to detect “boot sector viruses”, with
over 90% true positive rate in identifying those viruses, but
at a 15-20% false positive rate. Also, they only had access
to fewer than 200 malware samples. One of the most re-
cent work by Kolter and Maloof [?] used TFIDF, SVM and
decision trees on n-grams.

However, most research only takes into account charac-
teristics of the malware in question, but has not taken into
account those of the users who may use the malware. Our
work makes explicit our strong leverage in propagating and
aggregating machine reputation information for a file to infer
its goodness.

Another important distinction is our unique access to a
huge dataset. Most earlier works were only able to train
and test their algorithms on file samples in the thousands;
we have access to over 900M files, which allows us to perform
testing that is more comprehensive.

2.2 Research in Graph Mining

Authority & Trust Propagation.
Finding authoritative nodes is the focus of the legendary

PageRank [?] and HITS [?] algorithms; at the high level,
they both consider a webpage as “important” if other “im-
portant” pages point to it. In e↵ect, the importance of web-
pages are propagated over hyperlinks connecting the pages.
TrustRank [?] propagates trust over a network of webpages
to identify useful webpages from spam (e.g., phishing sites,
adult sites, etc.) Tong et al. [?] uses Random Walk with

Restart to find arbitrary user-defined subgraphs in an at-

tributed graph. For the case of propagation of two or more
competing labels on a graph, semi-supervised learning meth-
ods [?] have been used. Also related is the work on relational
learning (see, e.g., Neville et al. [?, ?]), which aggregates fea-
tures across nodes to classify movies and stocks.

Fraud Detection & Graph Mining.
The NetProbe system from Pandit et al. [?] models eBay

users as a tripartite graph of honest users, fraudsters, and
their accomplices; NetProbe uses the Belief Propagation al-
gorithm to identify the subgraphs of fraudsters and accom-
plices lurking in the full graph. McGlohon et al. [?] pro-
posed the general SNARE framework based on standard Be-
lief Propagation [?] for general labeling tasks; they demon-
strated the framework’s success in pinpointing misstated ac-
counts in some general ledger data. But they did not con-
sider the malware detection domain.

There is also a wealth of algorithms for mining frequent
subgraphs such as gSpan[?], the GraphMiner system [?] and
related systems [?, ?, ?].

3. DATA DESCRIPTION
In this section, we familiarize our readers with the huge

dataset that the Polonium technology leverages for inferring
file reputation.

3.1 Source of Data
The raw submission data are contributed anonymously

by the 48 million worldwide users of Norton 2008, 2009,
or 2010 products, who chose to participate in the Norton
Community Watch program. Thus, the collection period
spans almost 3 years.

These raw data are anonymized; we have no access to
personally identifiable information. They span over 60 ter-
abytes of disk space. Symantec collects statistics on both le-
gitimate and malicious applications running on each partici-
pant’s machine—this application usage data serves as input
to the Polonium system. The total number of files described
in the raw data exceeds 900M.

After Symantec’s teams of engineers collected and pro-
cessed these raw data, we constructed a huge bipartite graph
from them, with almost one billion nodes and 37 billion

edges. To the best of our knowledge, both the raw file
submission dataset and this graph are the largest of their
kind ever published. We note however, despite these large
numbers, these data are only from a subset of Symantec’s
complete user base.

Each contributing machine is identified by an anonymized
machine ID, and each file by a file ID which is generated
based on a cryptographically-secure hashing function.

We try our best to show as much information about the
data as possible, but there is proprietary information that
we cannot disclose.

3.2 Machine & File Statistics
A total of 47,840,574 machines have submitted data about

files on them. Figure 2 shows the distributions of the ma-
chines’ numbers of submissions. The two modes approxi-
mately correspond to data submitted by two major versions
of Norton products, where data collection mechanisms dif-
fer. Data points on the left generally represent new ma-
chines that have not submitted many file reports yet; with

Figure 2: Machine Submission Distribution, in log-
log scale.

Figure 3: File Prevalence Distribution, in log-log
scale. Prevalence cuts o↵ at 200,000 which is the
maximum number of machine associations stored for
each file. Singletons are files reported by only one
machine.

time, these points (machines) gradually move towards the
right to join the dominant distribution.

903,389,196 files have been reported in the dataset. Fig-
ure 3 shows the distribution of the file prevalence, which
follows the Power Law. As shown in the plot, there are
about 850M files that have only been reported once. We
call these files “singletons”. Symantec believes that these
singleton files fall into two di↵erent categories:

• Malware which has been mutated prior to distribution
to a victim, generating a unique variant;

• Legitimate software applications which have their in-
ternal contents fixed up or JITted during installation
or at the time of first launch. For example, Microsoft’s
.NET programs are JITted by the .NET runtime to op-
timize performance; this JITting process can result in
di↵erent versions of a baseline executable being gener-
ated on di↵erent machines.

For the files that are highly prevalent, we store only the
first 200,000 machine IDs associated with those files.

3.3 Bipartite Graph of Machines & Files
We generated an undirected, unweighted bipartite

machine-file graph from the raw data, with almost 1 billion
nodes and 37 billion edges (37,378,365,220). 48 million of
the nodes are machine nodes, and 903 million are file nodes.
An (undirected) edge connects a file to a machine that has
the file1. All edges are unweighted; at most one edge con-
nects a file and a machine. The graph is stored on disk as a
binary file2 using the adjacency list format. This binary file
spans over 200GB.

4. THE POLONIUM ALGORITHM
In this section, we present the Polonium algorithm for de-

tecting malware. We begin by describing the malware detec-
tion problem and enumerating the pieces of helpful domain
knowledge and intuition for solving the problem.

4.1 Problem Description
Our Data. We have a billion-node graph of machines

and files, and we want to label a file node as good or bad,
along with a measure of the confidence in that disposition.
We may treat each file as a random variable X 2 {x

g

, x
b

},
where x

g

is the good label (or class) and x
b

is the bad label.
The file’s goodness and badness can then be expressed by
the two probabilities P (x

g

) and P (x
b

) respectively, which
sum to 1.

Goal. We want to find the marginal probability P (X
i

=
x
g

), or goodness, for each file i. Note that as P (x
g

) and
P (x

b

) sum up to one, knowing the value of one automatically
tells us the other.

4.2 Domain Knowledge & Intuition
For each file, we have the following pieces of domain knowl-

edge and intuition, and we would like to use them to help
infer the file’s goodness, as depicted in Figure 4a.

Machine Reputation.
Symantec has computed a reputation score for each ma-

chine based on a proprietary formula that takes into account
multiple anonymous aspects of the machine’s usage and be-
havior. The score is a value between 0 and 1. Intuitively,

1A machine typically only reports a subset of all of its files
(executables).
2This binary file is actually composed of multiple files, but
to help clarify our discussion, we refer to them collectively
as one file.

Figure 4: Inferring file goodness through incorpo-
rating (a) domain knowledge and intuition, and (b)
other files’ goodness through their influence on as-
soicated machines.

we expect files associated with a good machine to be more
likely to be good.

File Goodness Intuition.
Good files typically appear on many machines and bad

files appear on few machines.

Homophilic Machine-File Relationships.
We expect that good files are more likely to appear on

machines with good reputation and bad files more likely to
appear on machines with low reputation. In other words,
the machine-file relationships can be assumed to follow ho-
mophily.

File Ground Truth.
Symantec maintains a ground truth database that contains

large number of known-good and known-bad files, some of
which exist in our graph. We can leverage the labels of these
files to infer those of the unknowns. The ground truth files
influence their associated machines which indirectly transfer
that influence to the unknown files. This intent is depicted
in Figure 4b.

The attributes mentioned above are just a small subset of
the vast number of machine- and file-based attributes avail-
able at Symantec that are analyzed and leveraged to protect
users from security threats.

4.3 Formal Problem Definition
After explaining our goal and information we are equipped

with to detect malware, now we formally state the problem
as follows:
Given:

• An undirected graph G = (V,E) where the nodes V
correspond to the collection of files and machines in the
graph, and the edges E correspond to the associations
among the nodes.

• Binary class labels X 2 {x
g

, x
b

} defined over some
nodes in V

• Domain knowledge that may help infer label assign-
ments

Output: Marginal probability P (X
i

= x
g

), or goodness,
for each file.

Our goal task of computing the goodness for each file over
the billion-node machine-file graph is an NP-hard inference
task [?]. Fortunately, the Belief Propagation algorithm (BP)
has been proven very successful in solving inference prob-
lems over graphs in various domains (e.g., image restoration,
error-correcting code). We adapted the algorithm for our
problem. This adaptation was non-trivial, as various com-
ponents used in the algorithm had to be fine tuned; more
importantly, as we shall explain, modification to the algo-
rithm was needed to induce iterative improvement in file
classification.

At a high level, the algorithm infers the label of a node
from some prior knowledge about the node, and from the
node’s neighbors. This is done through iterative message
passing between all pairs of nodes v

i

and v
j

. Let m
ij

(x
j

)
denote the message sent from i to j. Intuitively, this mes-
sage represents i’s opinion about j’s likelihood of being in
class x

j

. The prior knowledge about a node i, or the prior
probabilities of the node being in each possible class are ex-
pressed through the node potential function �(x

i

) (which we

shall discuss shortly). This prior probability may simply be
called a prior.

At the end of the procedure, each file’s goodness is deter-
mined. This goodness is an estimated marginal probability,
and is also called belief, or formally b

i

(x
i

) (⇡ P (x
i

)), which
we can threshold into one of the binary classes. For exam-
ple, using a threshold of 0.5, if the file belief falls below 0.5,
the file is considered bad.

In details, messages are obtained as follows. Each edge
e
ij

is associated with messages m
ij

(x
j

) and m
ji

(x
i

) for each
possible class. Provided that all messages are passed in ev-
ery iteration, the order of passing can be arbitrary. Each
message vector m

ij

is normalized over j (node j is the mes-
sage’s recipient), so that it sums to one. Normalization also
prevents numerical underflow (or zeroing-out values)3. Each
outgoing message from a node i to a neighbor j is generated
based on the incoming messages from the node’s other neigh-
bors. Mathematically, the message-update equation is:

m
ij

(x
j

)
X

xi2X

� (x
i

)
ij

(x
i

, x
j

)
Y

k2N(i)\j

m
ki

(x
i

)

where N (i) is the set of nodes neighboring node i, and

ij

(x
i

, x
j

) is called the edge potential ; intuitively, it is a
function that transforms a node’s incoming messages col-
lected into the node’s outgoing ones. Formally,

ij

(x
i

, x
j

)
equals the probability of a node i being in class x

i

given
that its neighbor j is in class x

j

. We shall explain how this
function is designed to fit our problem.

The algorithm stops when the beliefs converge (within
some threshold. 10�5 is commonly used), or a maximum
number of iterations has finished. Although convergence is
not guaranteed theoretically for general graphs, except for
those that are trees, the algorithm often converges in prac-
tice, where convergence is quick and the beliefs are reason-
ably accurate. When the algorithm ends, the node beliefs
are determined as follows:

b
i

(x
i

) = k� (x
i

)
Y

xj2N(i)

m
ji

(x
i

)

where k is a normalizing constant.

4.4 The Polonium Adaptation of BP
Now, we explain how we solve the challenges of incorpo-

rating domain knowledge and intuition to achieve our goal
of detecting malware. Succinctly, we can map our domain
knowledge and intuition to BP’s components (or functions)
as follows.

Machine-File Relationships�!Edge Potential.
We convert our intuition about the machine-file homophilic

relationship into the following edge potential shown in Table
2, which indicates that a good file is slightly more likely to be
associated with a machine with good reputation than with
a low-reputation one. (Similarly for bad file.) ✏ is a small
value (we chose 0.001), so that the fine di↵erences between
probabilities can be preserved.

3Normalization may be performed only when necessary; it
is not specified by the algorithm, and is only an implemen-
tation requirement

ij

(x
i

, x
j

) x
i

= good x
i

= bad
x
j

= good 0.5 + ✏ 0.5� ✏
x
j

= bad 0.5� ✏ 0.5 + ✏

Table 2: Edge potentials indicating homophilic
machine-file relationship. We choose ✏ = 0.001 to
preserve minute probability di↵erences

Figure 5: (a) Machine Node Potential (b) File Node
Potential

Machine Reputation�!Machine Prior.
The node potential function for machine nodes maps the

reputation score that Symantec has computed for each ma-
chine into the machine’s prior. It is an exponential mapping
(see Figure 5a) of the form machine prior = e�k⇥reputation ,
where k is a numerical constant internally determined based
on domain knowledge.

File Goodness Intuition�!Unknown-File Prior.
Similarly, we use another node potential function to set

the file prior by mapping the intuition that files that appear
on many machines are typically good. Figure 5b shows the
function mapping file prevalence into file prior.

File Ground Truth�!Known-File Prior.
For known-good files, we set their priors to 0.99. For

known-bad, we use 0.014.

4.5 Modifying The File!Machine Propagation
In standard Belief Propagation, messages are passed along

both directions of an edge. That is, the same edge is asso-
ciated with a machine!file message, and a file!machine

message.
We explained in Section 4 that we use the homophilic edge

potential (see Table 2) to propagate machine reputations to
a file from its associated machines. Theoretically, we could
also use the same edge potential function for propagating
file reputation to machines. However, as we tried through
numerous experiments – varying the ✏ parameter, or even
“breaking” the homophily assumption – we found that ma-
chines’ intermediate beliefs were often forced to changed too
significantly, which led to an undesirable chain reaction that
changes the file beliefs dramatically as well, when these ma-
chine beliefs were propagated back to the files. We hypoth-

4Note that no probability is ever 0, because it can “zero-
out” other values multiplied with them. A lower bound of
0.01 has been imposed on all probabilities. Upper bound is,
therefore, 0.99, since probabilities of the two classes add up
to 1.

esized that this happens because for a machine’s reputation
(used in computing the machine node’s prior) is a reliable
indicator of machine’s beliefs, while the reputations of the
files that the machine is associated with are weaker indica-
tors. Following this hypothesis, instead of propagating file
reputation directly to a machine, pass it to the proprietary
formula that Symantec uses to generate machine reputation,
which re-compute a new reputation score for the machine.
Through experiments discussed in Section 5, we show that
this modification leads to iterative improvement of file clas-
sification accuracy.

In summary, the key idea of the Polonium algorithm is
that it infers a file’s goodness by looking at its associated
machines’ reputations iteratively. It uses all files’ current
goodness to adjust the reputation of machines associated
with those files’; this adjusted machine reputation, in turn,
is used for re-inferring the files’ goodness.

5. EXPERIMENTS
In this section, we show that the Polonium algorithm is

scalable and e↵ective at iteratively improving accuracy in
detecting malware.

We evaluated the Polonium algorithm with the bipartite
machine-file network constructed from the raw file submis-
sions data. The graph consists of about 48 million machine
nodes and 903 million file nodes. There are 37 billion edges
among them, creating the largest network of its type con-
structed and analyzed to date.

All experiments reported were run on a 64Bit Linux (Red
Hat Enterprise Linux Server 5.3) with 4 Opteron 8378 Quad
Core Processors (4 x 4 = 16 total cores @ 2.4 Ghz) with
256GB of RAM, 1 TB of local storage and 60+ TB of net-
worked storage.

One-tenth of the ground truth files were used for evalua-
tion, and the rest were used for setting file priors.

All TPRs (True Positive Rates) reported in this section
were measured at 1% FPR, a level deemed acceptable for our
evaluation. Symantec uses myriads of malware detection
technologies; false positives from Polonium will be further
processed by those technologies, eliminating most, if not all,
of them. Thus, the 1% FPR used here only refers to that of
Polonium, and is independent of other technologies.

5.1 One-Iteration Results
With one iteration, the algorithm attains 84.9% TPR, for

all files with prevalence four or more. A file’s prevalence is
the number of machines that have reported it. (e.g., a file
of prevalence five means it was reported by five machines.)

Since the node beliefs are probabilities between 0 and 1,
we can threshold them into the binary class of (good or bad).
For example, using a threshold of 0.5, if the file belief falls
below 0.5, the file is considered bad.

We generated 10000 threshold points equidistant in the
range [0, 1] and applied them to the file beliefs, generating
10000 pairs of TPR-FPR values. The smooth ROC curve
interpolated from these 10000 points is shown in Figure 6.

We evaluated on files whose prevalence is 4 or above. For
files with prevalence 2 or 3, the TPR was only 48% (at 1%
FPR), too low to be usable in practice. For completeness,
the overall TPR for all files with prevalence 2 and higher is
77.1% (at 1% FPR).

It is not unexpected, however, that the algorithm does
not perform as e↵ectively for low-prevalence files, because a

.2 .4 .6 .8 1.0
False Positive Rate

(.01, .849)

1.0

.2

.4

.6

.8

0

Tr
ue

 P
os

it
iv

e
Ra

te

Figure 6: True positive rate and false positive rate
for files with prevalence 4 and above.

low-prevalence file is associated with few machines. Mildly
inaccurate information from these machines can a↵ect the
low-prevalence file’s reputation significantly more so than if
the file was a high prevalence one. We intend to combine this
technology with other complementary ones to tackle files in
the full spectrum of prevalence.

5.2 Multi-Iteration Results
The Polonium algorithm is iterative. After the first it-

eration, which attained a TPR of 84.9%, we saw a fur-
ther improvement of about 2.2% in TPR over 6 iterations
(Figure 7), averaging at 0.37% improvement per iteration,
where initial iterations’ improvements are generally more
than the later ones, indicating a diminishing return phe-
nomenon. Since the baseline TPR at the first iteration is
already high, this subsequent improvement is significant.

Iterative Improvements.
In Table 3, the first row shows the TPRs from iterations 0

to 6, for files with prevalence 4 or higher. The corresponding
(zoomed-in) changes in the ROC curves over iterations is
shown in Figure 7.

Iteration

Prevalence 0 1 2 3 4 5 6 %"
� 4 84.9 85.5 86.0 86.3 86.7 86.9 87.1 2.2

� 8 88.3 88.8 89.1 89.5 89.8 90 90.1 1.8

� 16 91.3 91.7 92.1 92.3 92.4 92.6 92.8 1.5

� 32 92.1 92.9 93.3 93.5 93.7 93.9 93.9 1.8

� 64 90.1 90.9 91.3 91.6 91.9 92.1 92.3 2.2

� 128 90.4 90.7 91.4 91.6 91.7 91.8 91.9 1.5

� 256 89.8 90.7 91.1 91.6 92.0 92.5 92.5 2.7

Table 3: True positive rate (TPR, in %) in detect-
ing malware. In the first row, TPR for all files with
prevalence 4 or higher at iteration 0 is 84.9%, and it
improves to 87.1% after 6 iterations. Iterative im-
provements are not limited to low-prevalence files.

We hypothesized that this improvement is limited to very-
low-prevalence files (e.g., 20 or below), as we believed the
influence they received through the propagated reputation
would be comparatively larger than high-prevalence files.
To find out whether this hypothesis is true, we gradually
excluded the low-prevalence files, starting with the lowest
ones, and observed changes in TPR. As shown in Table 3,

Figure 7: ROC curves of 7 iterations, showing im-
provements in true positive rate per iteration.

even after excluding all files below 32 prevalence, 64, 128
and 256, we still saw improvements of over 1.5% over 6 it-
erations, disproving our hypothesis. This indicate, to our
surprise, that the improvements are quite dispersed over the
prevalence spectrum.

Goal-Oriented Termination.
As we mentioned earlier in Section 4, the Polonium algo-

rithm’s termination criterion is goal-oriented, meaning the
algorithm stops when the TPR does not increase any more
(at the preset 1% FPR). This is in contrast to Belief Propa-
gation’s convergence-oriented termination criterion. In our
premise of detecting malware, the goal-oriented approach is
more desirable, because our goal is to classify software into
good or bad, at as high of a TPR as possible while main-
taining low FPR – the convergence-oriented approach does
not promise this; in fact, node beliefs can converge, but to
undesirable values that incur poor classification accuracy.

We note that in each iteration, we are trading FPR for
TPR. That is, boosting TPR comes with a cost of slightly
increasing FPR. When the FPR is higher than desirable, the
algorithm stops.

5.3 Scalability
We ran the Polonium algorithm on the complete bipartite

graph with 37 billion edges. Each iteration took about 3
hours to complete (⇠185min), with no significant di↵erences
among iterations.

Theoretically, the Polonium algorithm scales linearly with
the number of edges in the graph, thanks to its adaptation
of the Belief Propagation algorithm; its time complexity is
O(|E|). We empirically evaluated this by running the algo-
rithm on the full graph of over 37 billion edges, and smaller
billion-edge subgraphs with around 20B, 11.5B, 4.4B and
0.7B edges. We plotted the per-iteration run times for these
subgraphs in Figure 8, which shows that the run time em-
pirically achieved linear scale-up.

5.4 Design and Optimizations
We implemented two optimizations that dramatically re-

duce both run time and storage requirement.
The first optimization eliminates the need to store the

edge file in memory, which describes the graph structure, by
externalizing it to disk. The edge file alone is over 200GB.
We were able to do this only because the Polonium algo-
rithm did not require random access to the edges and their

Figure 8: Scalability of Polonium. Run time per
iteration is linear in the no. of edges.

Figure 9: Illustration of our optimization for the
Polonium algorithm: Since we have a bi-partite
graph (’Files’ and ’Machines’), the naive version
leads to two independent (but equivalent) paths of
propagation of messages (orange, and blue arrows).
Eliminating one path saves us half of the computa-
tion and storage for messages, with no loss of accu-
racy

associated messages; sequential access was su�cient. This
same strategy may not apply readily to other algorithms.

The second optimization exploits the fact that the graph is
bi-partite (Machines, and Files) to reduce both the storage
and computation for messages by half [?]. We briefly ex-
plains this optimization here. Let B

M

[i, j](t) be the matrix
of beliefs (for machine i and state j), at time t, and similarly
B

F

[i, j](t) for the matrix of beliefs for the files. Because the
graph is bi-partited, we have

B
M

[i, j](t) = B
F

[i0, j0](t� 1) (1)

B
F

[i0, j0](t) = B
M

[i, j](t� 1) (2)

In short, the two equations are completely decoupled, as
indicated by the orange and blue edges in Figure 9. Both
streams of computations seem to converge to the same val-
ues, but we can achieve exactly the same results by just
following the orange arrows, eventually saving half of the
e↵ort.

6. CONCLUSIONS & DISCUSSION
In this paper, we presented Polonium, a scalable and ef-

fective technology for detecting malware.
We made the following contributions through Polonium:

• Our Polonium algorithm computes file reputation
based on the fast, scalable (O(|E|)) Belief Propagation

algorithm, which iteratively improves inference quality,
which attains 84.9% TPR (at 1% FPR) with just one
iteration, and further improves to 87.1% with more
iterations.

• We presented empirical observations on the largest
anonymized file submissions dataset ever published,
which spans over 60 terabytes of disk space. We also
constructed the largest machine-file graph from the
dataset and performed our evaluation on it. The graph
consists of 37-billion edges among 48 million of users
and 903 million files.

• We detailed important design and implementation fea-
tures of our method which enable its successful appli-
cation on our large dataset.

In Summary, our experience and positive results with this
work has demonstrated one promising solution to the prob-
lem of detecting malware. Classifying files by propagating
information from their associated machines is a revolution-
ary idea for malware detection. And Symantec is in a unique
position to bring this approach to the users due to Syman-
tec’s unmatched installed base. Millions of Norton security
product users from around the world contributed their data
to Symantec which in turns help Symantec protect them
from security threats at a much faster manner, reducing the
needs for signatures.

We discuss our plan for future work below.

Using Larger Dataset & More Features.
In this work, we only use a subset of all the data col-

lected through the Norton Community Watch program; the
attributes mentioned in this paper are just a small subset of
the vast number of machine- and file-based attributes avail-
able at Symantec that are analyzed and leveraged to pro-
tect the users from security threats. By considering more
attributes, we may obtain even better malware detection
e�cacy.

Weighing in File Prevalence & Correlation.
All files are currently treated equally, no matter what their

prevalence is. However, in reality, the cost of wrongly label-
ing a high-prevalence good file as bad has significantly higher
cost than mislabeling a low-prevalence one. This points to
the need to analyze our results by suitably weighing in the
prevalence factor. We may also exploit the fact that some
files (or applications) commonly exist together on a com-
puter, to better estimate the reputations for these groups of
files; alternative evaluation may then be performed at the
group level, in addition to the current file level.

Further Optimization.
One major piece of future work is to further reduce the al-

gorithm’s execution time by parallelizing it, using the frame-
work proposed by Gonzalez et. al [?].

7. ACKNOWLEDGEMENTS
Polo Chau is supported by the Symantec Research Labs

Graduate Fellowship 2009–2010. We thank Zulfikar Ramzan,
Adam Bromwich, and Vijay Seshadri for their helpful com-
ments and suggestions, and Daniel Asheghian for compiling
decision tree’s e�cacy results.

